Only one of the charged amino acids located in membrane-spanning regions is important for the function of the Saccharomyces cerevisiae uracil permease.

نویسندگان

  • B Pinson
  • J Chevallier
  • D Urban-Grimal
چکیده

The transport of uracil into the yeast Saccharomyces cerevisiae is mediated by uracil permease, a specific co-transporter encoded by the FUR4 gene. Uracil permease is a multispan membrane protein that is delivered to the plasma membrane via the secretory pathway. Experimental results led to the proposal of a two-dimensional model of the protein's topology. According to this model, the membrane domain of Fur4p contains three charged amino acid residues (Glu-243, Lys-272 and Glu-539) that are conserved in the members of the FUR family of yeast transporters. We have previously shown that a mis-sense mutation leading to the replacement of Lys-272 by Glu severely impairs the function of uracil permease. In the present paper, the role of the three charged residues present in the membrane-spanning regions of Fur4p was further investigated by using site-directed mutagenesis. The variant permeases were correctly targeted to the plasma membrane and their stabilities were similar to that of the wild-type permease. The effect of the mutations was studied by measuring the uptake constants for uracil on whole cells and equilibrium binding parameters on plasma membrane-enriched fractions. We found no evidence for ionic interaction between either of the glutamic residues in transmembrane segments 3 and 9 and the lysine residue in transmembrane segment 4. Of the three charged residues, only Lys-272 was important for the transport activity of the transporter. Its replacement by Ala, Glu or even Arg strongly impaired both the binding and the translocation of uracil.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of Single Cell Protein from Sugarcane Bagasse by Saccharomyces cerevisiae in Tray Bioreactor

In this study, solid state fermentation (SSF) was carried out to produce single cell protein (SCP) from sugarcane bagasse using Saccharomyces cerevisiae. The SSF experiment were performed in a tray bioreactor. The influence of several parameters including extraction buffer, initial moisture content of substrate, fermentation time, relative humidity in bioreactor, the bioreactor temperature and ...

متن کامل

A PEST-like sequence mediates phosphorylation and efficient ubiquitination of yeast uracil permease.

Uptake of uracil by the yeast Saccharomyces cerevisiae is mediated by a specific permease encoded by the FUR4 gene. Uracil permease located at the cell surface is subject to two covalent modifications: phosphorylation and ubiquitination. The ubiquitination step is necessary prior to permease endocytosis and subsequent vacuolar degradation. Here, we demonstrate that a PEST-like sequence located ...

متن کامل

Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis.

Lower eukaryotes such as the yeast Saccharomyces cerevisiae and the filamentous fungus Aspergillus nidulans possess a multiplicity of amino acid transporters or permeases which exhibit different properties with respect to substrate affinity, specificity, capacity and regulation. Regulation of amino acid uptake in response to physiological conditions of growth is achieved principally by a dual m...

متن کامل

Monoubiquitination is sufficient to signal internalization of the maltose transporter in Saccharomyces cerevisiae.

Monoubiquitination of the 12-transmembrane segment (12-TMS) Saccharomyces cerevisiae maltose transporter promoted the maximal internalization rate of this protein. This modification is similar to that of the 7-TMS alpha-factor receptor but different from that of the 12-TMS uracil and general amino acid permeases. This result shows that binding of ubiquitin-Lys63 chains is not required for maxim...

متن کامل

Initiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae

In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 339 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1999